
1Scientific Data |          (2025) 12:301  | https://doi.org/10.1038/s41597-025-04579-8

www.nature.com/scientificdata

Ear-EEG sleep monitoring data sets
Kaare Bjarke Mikkelsen  1 ✉, Yousef Rezai tabar1, Laura Rævsbæk Birch1,  
Simon Lind Kappel1, Christian Bech Christensen1, Lars Dalskov Mosgaard2, Marit Otto3, 
Martin Christian Hemmsen  2, Mike Lind Rank2 & Preben Kidmose1

Here we present data from two studies, both of which had the purpose of investigating the potential 
of using electroencephalograms measured from the ear (’ear-EEG’) for sleep monitoring in a home 
environment. In total, 320 nights were recorded. All nights were recorded with ear-EEG, and some 
were also recorded using scalp-EEG and/or wristworn actigraphy. all subjects were recorded multiple 
times. to our knowledge, this is the most extensive open access data set available for mobile EEG 
development, and possibly also the best open access dataset for studying repeated sleep monitoring on 
individuals. We describe the details of each data set, including data quality measures, and compare the 
sleep scoring performance to a previously published dataset.

Background & Summary
We here describe a collection of 2 data sets consisting of in total 320 sleep recordings, all performed using 
the ear-EEG method1, on 30 healthy subjects. These constituent data sets have each first been described in 
Mikkelsen et al.2 and Tabar et al.3 and will be referred to as EESM19 and EESM23 (EESM meaning ‘Ear-EEG 
Sleep Monitoring’ and the number referring to the year of first publication). The unscored portion of EESM19 
was first described in the later paper Mikkelsen et al.4. Due to rules regarding anonymization of the data sets, 
they have not been shared previously, hence this data descriptor to describe the formats and other details 
surrounding the two data sets.

The data was collected as part of an endeavor to develop the ear-EEG recording method1,5 into a capable 
sleep monitoring method. To our knowledge, this collection is, at the time of writing, the largest open data set 
concerning mobile EEG monitoring (sleeping or otherwise), and the largest open collection of repeated EEG 
sleep recordings on the same subjects.

While there exist multiple different sleep monitoring solutions based on EEG, we believe that this data set 
will be useful for a broad selection of biomedical and sleep researchers. We base this not only on the quality of 
the data set itself, but also previous results indicating that many different recording setups can lead to similarly 
good sleep monitoring6. Thus, we hope that this data set may in general increase the interest in high quality 
mobile sleep monitoring.

Additionally, we also believe that this data will be useful for researchers working on other aspects of mobile 
brain monitoring. The data set contains long EEG recordings in uncontrolled environments, using recording 
techniques relevant for future mobile brain-computer-interface implementations.

In Table 1 is seen an overview of the two data sets. We see that they differ in both type of EEG recording 
equipment, size as well as which additional sensors were included.

Methods
Please see Table 1 for an overview of the differences between the two datasets, as described below:

For both data sets, healthy, adult research subjects were recruited through public channels and 
word-of-mouth. After obtaining informed consent, subjects were fitted for ear-EEG recordings. For EESM19, 
this consisted of taking molds of the outer ear (performed at the local audiological clinic), for EESM23, a selec-
tion of generic ear pieces were tried to find the best fit.

After fitting ear pieces had been prepared for the subject, two types of recordings took place: first combined 
recordings of ear-EEG and polysomnography (PSG) during either 4 (EESM19) or 2 (EESM23) nights. These 
recordings were not back-to-back, but scheduled according to equipment and time restrictions. After finishing 
the combined recordings, half of the subjects in EESM19 and all of the subjects in EESM23 underwent ear-EEG 
only recordings. For EESM19, this was 12 additional nights, for EESM23 it was 10.
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After all nights, the subjects filled out questionnaires regarding their sleep quality and the comfort of the 
equipment, and during all EESM19 nights, the participants also wore wrist-worn actigraphs.

Below is given additional detail about the steps mentioned above: 

•	 Polysomnography (PSG): Also known as a ‘partial PSG’, consisting of left and right EOG, three chin EMG 
electrodes, F3, F4, C3, C4, O1, O2, M1 and M2, placed according to the AASM standard7. EEG amplifier 
depends on the study. PSG setups were mounted in a laboratory by the investigators. All PSG recordings were 
manually scored by trained sleep technicians. In the case of EESM19, each PSG recording was scored twice, by 
different technicians from different sleep centers. All manual scorings are included in the data sets. The sleep 
scorers were instructed to only score epochs for which they felt reasonably certain of the correct stage - in 
other words to not shy away from using the ‘unscored’ option. This resulted in 5% and 3% unscored epochs in 
EESM19 and and EESM23, respectively. Most unscored epochs are localized to a few recordings.

•	 ear-EEG: EEG electrodes mounted on ear pieces to achieve in-ear EEG, as described in Looney et al, Kidmose 
et al. and Mikkelsen et al.1,5,8. In both studies, ear electrodes were made from iridium oxide (dry electrodes, 
see Kappel et al.9), while the number of recording electrodes in each ear varied from 2 to 6. Depending on the 
study, either individualized ear pieces, designed based on ear impressions, or generic ear pieces based on a 
fixed design were used. In EESM19 and EESM23, there are recordings with and without simultaneous PSG. In 
EESM19, the PSG and ear-EEG electrodes were connected to the same amplifier (a TMSi Mobita). For these 
recordings, the equipment was mounted in a laboratory. Otherwise (so, for PSG-free recordings in EESM19 
and all recordings in EESM23), the ear-EEG ear pieces were put in shortly before the subject went to bed, by 
the study participants themselves according to instructions given by the investigators previously. In EESM19, 
the ear-EEG only recordings included a single EOG electrode (EOG-r) as well.

•	 Actigraphy: Wrist-mounted actigraphy was recorded using ‘GENEactiv’ wrist bands from Activinsights. 
Besides triaxial actigraphy, the wristbands also recorded temperature and ambient light.

•	 Comfort questionnaire: In both studies, the subjects were asked to answer a short questionnaire in the 
morning, describing their experience sleeping with the ear-EEG. The questions in the questionnaire con-
cerned the experienced sleep quality, whether the night’s sleep was different from the subject’s usual sleep and 
the comfort of the ear-EEG device.

All EEG recordings (both ear-EEG and polysomnography) were performed using an average referencing 
scheme, and have been saved in the same format.

In Fig. 1 is shown examples of a person wearing both PSG and ear-EEG recording equipment, as well as the 
ear-EEG equipment itself.

Additional details about the recording types can be found either by consulting the README-files within 
each data set, or the original papers2,3.

EESM19 EESM23

Individualized ear piece, dry IrO electrodes Generic ear piece, dry IrO electrodes

Number of ear-Electrodes 6+6 2+3

PSG and ear-EEG 20 subjects, 4 nights each 10 subjects, 2 nights each

Manual scoring 80 nights (twice) 20 nights

Male / Female 7 / 13 6 / 4

Mean age, range (years) 25.9, 23-36 27.4, 22-35

ear-EEG only 10 subjects, 12 nights each 10 subjects, 10 nights each

ear-EEG Amplifier TMSi Mobita In-house device

PSG amplifier TMSi Mobita TMSi Mobita

Ground electrode pos. Neck In-ear

Actigraphy Yes —

Comfort questionnaire Yes Yes

ASSR recordings Yes —

Calibration recording Yes Yes

Table 1. Overview of the two data sets, with the different ear piece designs clearly visible at the top.
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All subjects gave written, informed consent. The studies were approved by the Central Denmark Region 
Committees on Biomedical Research Ethics as well as the Danish Medicines Agency. Case numbers are 1-10-
72-413-17 and 2017111085 for EESM19, and 1-10-72-13-20 and 2020012619 for EESM23. Publication was not 
mentioned in the informed consent form. Because of this, prior to publication of the data, the local GDPR 
office of ‘Region Midt’ in Central Jutland considered the state of anonymization of the data set and judged it to 
be fully anonymized. Because of this, the GDPR office judged that publication of the data is not in violation of 
the GDPR.

types of Recordings
The sessions in both studies are represented by multiple different recordings. The different types of recording are: 

•	 Calibration recordings: To get an estimate for electrode quality, subjects watched a short video with vari-
ous instructions for performing jaw clenches, opening and closing their eyes and performing horizontal eye 
movements. The video, with its instructions, is included in both EESM19 and EESM23 under ‘stimuli’. An 
in-depth analysis of the responses, as recorded in EESM19, can be found in Mikkelsen et al.10.

•	 ASSR recording: To obtain objective measures of electrode connection quality, ‘auditory steady state 
responses’ (ASSR) were recorded in the laboratory after EEG setups were mounted.

•	 Sleep recording: Sleep recordings took place in the subject’s own home.

Study participants were primarily recruited among university students. No participants had known neurological 
or sleep disturbances.

Data Records
The two data sets are available at openneuro.org, with reference numbers ‘ds005185’ for EESM1911 and 
‘ds005178’ for EESM2312.

All data sets have been formatted according to the Brain Imaging Data Set (BIDS) standard13. All EEG files 
are stored as EEGLAB .set files14, all manual scoring is stored as .tsv event files, and all actigraphy recordings are 
stored as tsv.gz, in accordance with the BIDS standard. All .tsv files have accompanying .json files describibing 
each column. In following the standard, all files are sorted first into ‘subject’, then ‘session’ and finally ‘modality’ 
folders, and for redundancy, each file is named according to this convention. In Fig. 2 is shown a small slice 

Fig. 1 Examples of the equipment used in the two studies. (A) person wearing partial PSG with ear-EEG, 
from EESM19. (B) Person wearing only ear-EEG with a single EOG electrode, from EESM19. (C) Dry-contact 
custom ear-piece. Written consent was obtained from the person in the photos.

Fig. 2 Overview of how data sets are structured according to BIDS13, taking EESM19 as an example. Subjects 
are top level, then sessions, then modalities. For EESM19, subject would go up to ‘020’, and session can go up to 
‘016’. json files for generic tsv types are placed on the top level, as shown.
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through EESM19, showing the location of the PSG recording for subject 001, session 001, together with one of 
the manual scorings. We recommend looking into the BIDS standard13 for the full details.

technical Validation
Methods. While many different analyses are possible with this data, we here focus on its validity for automatic 
sleep scoring, in particular using the ear-EEG data together with the manual scorings. In the following we demon-
strate a full analysis pipeline, starting from the raw data as shared, finishing in a sleep scoring analysis. The code 
to reproduce the analysis, with comments, can be found at our dedicated gitlab repository15.

There are two relevant steps in this processing: (1) data cleaning and (2) the sleep scoring itself. Data cleaning 
was done with in-house developed Python codes, performing a mixture of linear filtering and nonlinear detec-
tion and removal of transient artifacts. Largely, this cleaning pipeline is a standardization and translation (from 
Matlab to Python) of the procedures which were used in Mikkelsen et al.2 and Tabar et al.3. It may here be impor-
tant to note that the artifact detection was thoroughly inspected and controlled during the initial studies, but 
also that this processing pipeline is being applied ‘after’ data publication. Meaning that it is very easy for users 
of the data set to experiment with other preprocessing methods, completely replacing our suggested approach 
(indeed, we encourage people to investigate this).

Using the cleaned data, spectrograms are calculated and fed to a version of SeqSleepNet16 pretrained on 
the SHHS dataset17,18, using similar settings to what was used in Mikkelsen et al.6. This pretrained version is 
applied to the two data sets in the following manner: The SHHS-version of the network was first finetuned on 
EESM19 in a leave-one-subject out manner. Separately, a different version of the pretrained network was first 
fine-tuned on all subjects in EESM19, and then was further finetuned to EESM23, which is significantly smaller 
than EESM19 in terms of labeled recordings.

After training the models, we compare the outputs from both of the finetuned models to the manual scor-
ings for the same data, by calculating Cohen’s kappa19 for each comparison. For comparison, we applied the 
‘EESM23’ approach to the already published dataset EESM1720,21 and included the results in the same figure. 
Epochs marked as ‘unscored’ by the manual scorer were disregarded in this analysis.

Note that we do not delve into the similar sleep scoring of the PSG recordings, but a very similar flow would 
work there, and most likely yield even better performance, as was shown in Mikkelsen et al.6.

Results. In Fig. 3 is shown the distributions of recording sizes for the nightly recordings for both data sets. 
Distributions are shown for both before and after cleaning of the data. We see that the before / after distributions 
are quite similar for each data set, indicating a generally high data quality.

In Fig. 4 is shown the distributions of Cohen’s kappa values. We see that all values are comfortably above 
the chance level (0), but we also see a marked difference between the data sets. EESM19 is the largest of the 
3 data sets, and thus it is not entirely surprising that it is also the best performing. However, we note that the 
obtained performance for EESM23 is somewhat less than what was reported in Tabar et al.3. We have not been 
able to isolate the reason for this discrepancy, but note that the low average kappa in particular is driven by 
two recordings with kappa values below 0.4. We suspect that this may be related to the translation of the data 
cleaning pipeline from Matlab to Python. We hope future work with these open data sets can shed some light 
on this.

Fig. 3 Length of each scored recording (in 30 second epochs), as well as the number of epochs suitable for 
automatic scoring after data cleaning.
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Usage Notes
Both data sets have been reformatted according to the BIDS standard13. This means that data is easily accessed 
using standard software and packages. In the accompanying analysis pipeline, all preprocessing is done with a 
combination of MNE22, MNE-bids23, numpy24 and scipy25.

All EEG data is saved in the .set format of the MATLAB package EEGLAB, making it very easy to work with 
from Matlab as well. In line with the BIDS specification, each data set has a detailed README file describing all 
peculiarities of the data set.

In addition to the sleep analysis pipeline, we have also included the code used for translating from source 
data to BIDS format, as well as the unit tests performed on the BIDS version. As there are certain peculiarities 
related to the specific hardware setups, which must be properly taken care of before using the data, we strongly 
recommend using the BIDS version of the dataset.

For completeness, we should point out that this pipeline is designed for the sleep data. For other types of 
data, such as the ASSR data or the calibration recordings, we suggest processing such as used in Kappel et al.26 
or Mikkelsen et al.10, respectively.

The data has been used as benchmark data sets for developing automatic sleep scoring models27,28, as well as 
simply investigating the information content of ear-EEG sleep recordings29,30.

Additionally, these data can be used to investigate ‘inter-intra’ subject variation, both in simple evoked 
stimuli10 and sleep features31. It may also be useful for investigating sleep ‘fingerprints’, both to monitor individual 
changes over time32, as well as investigate methods to increase individual sleep scoring performance33.

It may also be possible to use the data to investigate how to use calibration data for real-time updating of EEG 
models:in both datasets there are separate ‘calibration’ recordings, part of which made the basis for the analysis 
in Mikkelsen et al.10. These may correlate with individual variations among the participants.

Code availability
A complete processing pipeline for the sleep data, in Python, is found under ‘code’ in each data set.
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